(x^2)/4+8=64

Simple and best practice solution for (x^2)/4+8=64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2)/4+8=64 equation:



(x^2)/4+8=64
We move all terms to the left:
(x^2)/4+8-(64)=0
We add all the numbers together, and all the variables
x^2/4-56=0
We multiply all the terms by the denominator
x^2-56*4=0
We add all the numbers together, and all the variables
x^2-224=0
a = 1; b = 0; c = -224;
Δ = b2-4ac
Δ = 02-4·1·(-224)
Δ = 896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{896}=\sqrt{64*14}=\sqrt{64}*\sqrt{14}=8\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{14}}{2*1}=\frac{0-8\sqrt{14}}{2} =-\frac{8\sqrt{14}}{2} =-4\sqrt{14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{14}}{2*1}=\frac{0+8\sqrt{14}}{2} =\frac{8\sqrt{14}}{2} =4\sqrt{14} $

See similar equations:

| 5^(x/2)=125 | | )4=0.25(w−4.3) | | 8x+6=5x-9 | | 0.5x+0.8=240 | | c+22-3/4c=5+17 | | 4(5x+8)-(x+5)=-15 | | 4x+36x=44x | | 5.5p-6.8=15.24 | | x-(x*0.1)=622.29 | | 13b+40=31b-14 | | (5x-3)5(7x-6)=10 | | 31+2a-5=a+50 | | (6x+2)40=90 | | 7f+6=4 | | 4(x+2)+9=6x+23 | | 5.00+1/6x=11.25 | | b+b-10=b+40 | | -2(-8x+1)+2(-5x+6)=5x+2x | | 11x-7(-x+2)=-14 | | x+12+x-20=x+50 | | (x)+(x+2)+(x+4)=117 | | 22x-1=19X+11 | | p+p-31=p+42 | | 6×-2y-7=0 | | (5x-3)5(7x-6)=x | | 500+35x=500-55x | | 5+10a=-4(a+6) | | -23x=x-23 | | u+u=u+41 | | 5f-9f=10 | | a-42+a=a+48 | | x+90+54.4=180 |

Equations solver categories